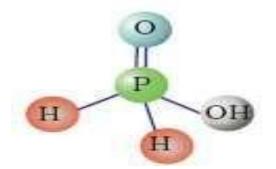
CHEMISTRY STUDY MATERIALS FOR CLASS 12 GANESH KUMAR DATE:- 28/06/2020

The p-Block Elements

Oxoacids of Phosphorus: Phosphorus forms a number of oxoacids.


1. H₃PO₂ [Hypophosphorus Acid (Phosphinic Acid)]

It is prepared by heating white phosphorus with concentrated NaOH solution followed by passing through cation exchange resin.

 $P_4 + 3NaOH + 3H_2O \rightarrow PH_3 + 3NaH_2 PO_2$ (sodium hypophosphite)

 $NaH_2PO_2 + H^+$ -Resin $\rightarrow H_3PO_2 + Na^+$ -Resin

Structure:

It is a strong reducing agent due to the presence of a P-H bond. It is monobasic even though it contains three hydrogen atoms. This is because the hydrogen atoms directly bonded to the P atom will not dissociate.

2. H₃PO₃ [Orthophosphorus Acid (Phosphonic Acid)]

It is prepared by the action of water on P_2O_3

 $P_2O_3 + H_2O \rightarrow H_3PO_3$

It is dibasic because of the presence of two –OH groups.

Structure:

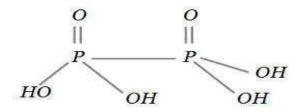
3. H₄P₂O₅ [Pyrophosphorus Acid]

It is prepared by the action of H₃PO₃ on PCl₃

 $PCl_3 + 5H_3PO_3 \rightarrow 3 H_4P_2O_5 + 3HCl$

It is also dibasic because of the presence of two –OH groups.

4. H₄P₂O₆ [Hypophosphoric Acid]


It is prepared by the action of an alkali on red Phosphorus followed by passing through cation exchange resin.

 $2P + NaOH + H_2O {\longrightarrow} Na_2H_2P_2O_6$

 $Na_2H_2P_2O_6 + 2H^+ - Resin \rightarrow H_4P_2O_6 + 2Na^+ - Resin$

It is a tetra basic acid.

Structure:

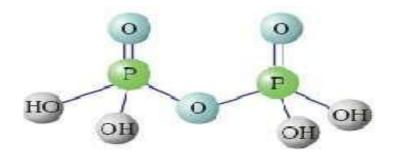
5. H₃PO₄ [Orthophosphoric Acid]

It is obtained by the action of water on phosphorus pentoxide (P_4O_{10})

 $P_4O_{10} + 6 H_2O \rightarrow 4 H_3PO_4$

It is also called Phosphoric acid. It's a tribasic acid and has a tetrahedral shape.

Structure:

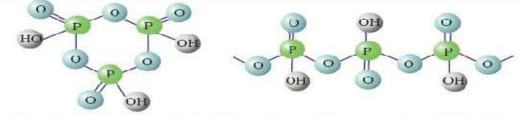


6. H₄P₂O₇ [Pyrophosphoric Acid]

It is obtained by heating Phosphoric acid at about 250° c.

 $2 H_3 PO_4 \rightarrow H_4 P_2 O_7$. It's a tetra basic acid.

Structure:



7. (HPO₃)_n [Metaphosphoric acid]

It is obtained by heating phosphorus acid with Br₂ vapours in a sealed tube.

 $H_3PO_3 + Br_2 \rightarrow HPO_3 + 2HBr$

Structure: It exists as a trimer or a polymer as follows:

Cyclotrimetaphosphoric acid, $(HPO_g)_3$ Polymetaphosphoric acid, $(HPO_g)_n$

The oxoacids of phosphorus in +3 oxidation state undergo Disproportionation (i.e. simultaneously oxidised and reduced). For example, orthophophorous acid (or phosphorous acid) on heating disproportionate to give orthophosphoric acid (phosphoric acid) and phosphine.

 $4H_3PO_3 \longrightarrow 3H_3PO_4 + PH_3$
